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Подгруппа H группы G называется s-c-перестановочно погруженной в G, если каждая силовская подгруппа из H явля-
ется s-условно перестановочной подгруппой в G. В данной работе получены некоторые новые характеризации p-
сверхразрешимости или p-нильпотентности для конечных групп при условии, что некоторые из её максимальных или 
2-максимальных подгрупп силовских подгрупп являются s-c-перестановочно погруженными. Также в данной работе 
обобщен ряд известных результатов. 
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A subgroup H of a group G is said to be s-c-permutably embedded in G if every Sylow subgroup of H is a Sylow subgroup of 
some s-conditionally permutable subgroup of G. In this paper, some new characterizations for a finite group to be p-
supersoluble or p-nilpotent are obtained under the assumption that some of its maximal subgroups or 2-maximal subgroups of 
Sylow subgroups are s-c-permutably embedded. A series of known results are generalized. 
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p-nilpotent group. 

 
 

Introduction 
Throughout this paper, all groups considered 

are finite and G denotes a finite group. The termi-
nology and notation are standard, as in [1] and [2].  

Let A  and  be subgroups of G . B A  is said to 
be permutable with  if B AB BA= . If A  is permu-
table with all subgroups of G , then A  is said to be 
a permutable subgroup [1] (or quasinormal subgroup 
[3]) of G. The permutable subgroups have many 
interesting properties. For example, Ore [3] proved 
that every permutable subgroup of a finite group is 
subnormal. Itô and Szép [4] proved that for every 
permutable subgroup H  of a finite group G, GH H/  
is nilpotent.  

However, in general, two subgroups H  and T  
of  may not be permutable in G  but  may con-
tain an element 

G G
x  such that x xHT T H= . Based on 

the observations, Guo, Shum and Skiba introduced 
the concept of conditionally permutable subgroup 
(in more general, the concept of X-permutable sub-
group) [5]–[7]: let X  be a non-empty subset of G . 
Then a subgroup A  of G  is said to be conditionally 
permutable (X-permutable) in  if for every sub-
group  of G , there exists some 

G
T x G∈  ( x X∈  

respectively)  such  that  x xAT T= A .  By  using   
the  conditionally  permutable   subgroups   and   

X -permutable subgroups, many authorse have ob-
tained some new elegant results on the structure of 
groups (cf. [5]–[8]).  

By considering some local conditionally per-
mutable subgroups, Huang and Guo [9] introduced 
the concept of s-conditionally permutable subgroup: 
a subgroup H  of G  is said to be s -conditionally 
permutable in G  if, for every Sylow subgroup T  of 

, there exists some G x G∈  such that x xHT T H= . 
By Sylow’s theorem, we see that a subgroup H  of 

 is G s -conditionally permutable in  if and only if 
for every 

G
( )p Gπ∈ , there exists a Sylow -

subgroup  such that 
p

T HT TH= . As a development 
of s-conditionally permutable subgroups, Chen and 
Guo [10] introduced the concept of s - -permutably 
embedded subgroups:  

c

Definition 0.1 ([10, Definition 1.1]). A sub-
group H of G is said to be s - -permutably embed-
ded in G if every Sylow subgroup of H is a Sylow 
subgroup of some s-conditionally permutable sub-
group of G.  

c

Clearly, all permutable subgroups, s-per-
mutable subgroups and s-conditionally permutable 
subgroups are s-c-permutably embedded. But the 
converse is not true in general (see, for example, 
Example 1–2 in [10]).  
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Definition 0.2 ([11], Definition 1.2). Let  be 
the smallest generator number of a -group  and 

d
p P

( )dM P ={  be a set of maximal sub-
groups of  such that  

1 dP P, ," }
P
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1
( )d

ii
P P

=
= Φ∩ . 

Such subset ( )dM P  is not unique for a fixed 
 in general. Let P ( )M P  denotes the family of all 

maximal subgroups of . We know that P
( ) ( 1) 1dM P p p| |= − / − , ( )dM P d| |=  and 

, so lim[( 1) 1]d

n
p p d

→∞
− / − / = ∞ ( ) ( )dM P M P| | | |� .  

The purpose of this paper is to go further into 
the influence of s - -permutably embedded sub-
groups on the structure of finite groups. Some new 
results are obtained and a series of known results are 
generalized.  

c

 
1 Preliminaries 
Recall that a class F  of groups is called a for-

mation if  is closed under taking homorphic im-
ages and subdirect products. A formation F  is said 
to be saturated if it contains every group G  with 

. It is well known that the class of all 
supersoluble groups is a saturated formation.  

F

( )G G/Φ ∈F

For the reader’s convenience, we cite some re-
sults which are useful in the sequel. 

Lemma 1.1 [10, Lemma 2.2]. Suppose that  
is a group, 

G
K G�  and H G≤ . Then:  

1) If H  is s - c -permutably embedded in , 
then 

G
HK K/  is s - -permutably embedded in G K .  c /
2) If K H≤  and H K/  is s - -permutably 

embedded in , then 
c

G K/ H  is s - -permutably 
embedded in G .  

c

3) If HK K/  is s - -permutably embedded in 
 and (

c
G K/ )H K 1| |,| | = , then H  is s - c -
permutably embedded in G .  

4) If H  is s - c -permutably embedded in , 
then 

G
H K∩  is s - -permutably embedded in c K .  
Lemma 1.2 [12, Lemma 2.3]. Let  be a satu-

rated formation containing all supersoluble groups 
and  a group with a normal subgroup  such 
that G N . If  is cyclic, then G .  

F

G N
/ ∈F N ∈F

Lemma 1.3 [13, Theorem IV 4.7]. If  is a Sy-
low -subgroup of a group  for some 

P
p G ( )p Gπ∈  

and  such that , then  is -
nilpotent.  

N G� ( )P N P∩ ≤ Φ N p

Lemma 1.4 [14, Lemma II 7.9]. Let  be a 
nilpotent normal subgroup of a group G . If 

, then  is a direct product of some 
minimal normal subgroups of G .  

N

( ) 1N G∩Φ = N

Lemma 1.5 [15]. Let  be the minimal prime 
dividing  and 

1p
G| | sp  the maximal prime dividing 

. If G  possesses two supersoluble subgroups G| |

H  and  with K 1G H p| : |=  and sG K p| : |= , then 
 is supersoluble.  G

Lemma 1.6 [2, Theorem 1.8.6]. Let H ,  be 
subgroups of , 

T
G ( ) ( ( ) (

pG O G p pN PO G O G
′ ′ ′/ ))/  and 

, then  ( )pT O G⊆

( )pHT T F G T/ ⊆ /  
if and only if ( )pH F G⊆ .  

Lemma 1.7 [16]. Let  be the minimal prime 
dividing 

p
G| | . Suppose G is 4A -free and  is a nor-

mal subgroup of G . If G L  is -nilpotent and 
L

/ p
3p L| | , then  is -nilpotent.  G p

 
2 Main results 
Theorem 2.1. Let  be a -soluble group 

and  a Sylow -subgroup of . Suppose that 
every member of some fixed 

G p
P p G

( )dM P  is s - c -
permutably embedded in G , then G  is -
supersoluble.  

p

Proof. Suppose that the Theorem is false and 
let  be a counterexample of minimal order. We 
proceed the proof as follows:  

G

(1) ( ) 1pO G′ =  and ( ( )) 1pO GΦ = . 
Assume that . Then 

 is a Sylow -subgroup of 
 and  is -soluble. Since  

( ) 1pO G′ ≠

( ) ( )p pPO G O G′ ′/ p
( )pG O G′/ ( )pG O G′/ p

1( ) ( ) ( ) ( )p p p pPO G O G PO G O G′ ′ ′ ′| / : / |=  

1( ) ( )p pPO G PO G p′ ′=| : |=

)

,  

1 ( ) ( )p pPO G O G′ ′/  is a maximal subgroup of 
. Let ( ) ( )p pPO G O G′ ′/

1 ( ) ( )p pPO G O G′ ′/ ( ( ) ( )d p pM PO G O G′ ′∈ / , 
and there must be a subgroup  such that 
it holds. Since  is 

1 ( )dP M P∈

1P s - c -permutably embedded in 
, by Lemma 1.1,  is G 1 ( ) ( )p pPO G O G′ ′/ s - c -

permutably embedded in . Thus, the hy-
pothesis holds for . By the choice of , 

 is -supersoluble. It follows that  is 
-supersoluble, a contradiction. 

( )pG O G′/

( )pG O G′/ G
( )pG O G′/ p G

p
Now assume that ( ( )) 1pO GΦ ≠ . By the same 

way, we see that the hypothesis holds for 
. The minimal choice of  implies 

that  is -supersoluble. Since the class 
of all -supersoluble groups is a saturated forma-
tion, we obtain that  is -supersoluble, a contra-
diction.  

( ( ))pG O G/Φ G
( ( ))pG O G/Φ p

p
G p

(2) Every minimal normal subgroup of  con-
tained in  is of order  and 

G
( )pO G p

( ) ( ) 1pO G G∩Φ = .  
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Since  is -soluble and G p ( ) 1pO G′ = , we 
have . Let  be an arbitrary minimal 
normal subgroup of  contained in . By 
Lemma 1.1, we see that the quotient group  
satisfies the hypothesis. The minimal choice of  
implies that  is -supersoluble. If 

( ) 1pO G ≠ N
G ( )pO G

G N/
G

G N/ p ( )N P≤ Φ  
then  is -supersouble, a contradiction. Thus 

. Since , where 

G p

( )N Φ
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P P
1

( ) d
ii

P
=

Φ =∩
iP ∈ ( )dM P , we may without loss of generality as-

sume that . Let 1N P 1N N P1= ∩ . Then  

1 1 1 1N N N N P NP P P P p| : |=| : ∩ |=| : |=| : |=1 . 
Hence,  is a maximal subgroup of . Since  
is 

1N N 1P
s - c -permutably embedded in , there exists an G

s -conditionally permutable subgroup A  of G  such 
that  is a Sylow -subgroup of 1P p A . Then for an 
arbitrary prime divisor q  of  with , there 
exits a Sylow -subgroup  of  such that 

G| | p q≠
q Q G

AQ = QA

= ≤ =

 . Since  is a maximal subgroup of  
and , we have 
that  or . If 

, then  and so 
. This implies that 

1N N

1 1N N P N A N AQ N= ∩ ≤ ∩ ≤ ∩ ≤

1N N AQ= ∩ N N AQ= ∩
N N AQ= ∩ N AQ≤

1 1P P N P AQ AQ 1P P= , 
which is impossible. Hence . It fol-
lows that . consequently . On 
the other hand, since  and , 

. This implies that . But since 
 is a minimal normal subgroup of , 

1N N AQ= ∩

1N AQ� 1( )GQ N N≤

1N N� 1 1N P�

1 1N P N P=� 1N G�
N G 1 1N =  and 

 is a cyclic subgroup of order . It follows that 
. By Huppert [13, Theorem I. 17. 4], there 

exists a subgroup 

N p

1 1N P∩ =
M  of G  such 

that and . Hence . It 
follows that . 

G NM= 1N M∩ = ( )N Φ G

r

( ) ( ) 1pO G G∩Φ =

(3) , where  (i=1,…,r) 
is a minimal normal subgroup of G  of order .  

1( )pO G R R= × ×" iR
p

It follows directly from (2) and Lemma 1.4.  
(4) The final contradiction.  
Since  is isomorphic with some sub-

group of 
( )G iG C R/

( )iAut R  which is a cyclic group, 

1
( ( )) ( ( ))r

G p G ii
G C O G G C R

=
/ = / ∩  

is -supersoluble. On the other hand, since  is 
-soluble and ,  by 

[2, Theorem 1.8.19]. Thus  is -
supersoluble. It follows from (3) that  is -
supersoluble. The final contradiction completes the 
proof.  

p G
p ( ) 1pO G′ = ( ( )) ( )G p pC O G O G≤

( )pG O G/ p
G p

As immediate corollaries of Theorem 2.1, we 
have the following:  

Corollary 2.1.1. Let  be a -soluble group 
and a Sylow -subgroup of . Suppose that 
every member of some fixed 

G p
P p G

( )dM P  is s -
conditionally permutable in G , then  is -
supersoluble.  

G p

Corollary 2.1.2. Let  be a soluble group. If 
every member of some fixed 

G
( )dM P  is s -

conditionally permutable in , for each prime  in G p
( )Gπ  and a Sylow -subgroup  of G , then G  is 

supersoluble.  
p P

Corollary 2.1.3. [9, Lemma 4.1]. Let  be a 
-soluble group. If every maximal subgroup of 

every Sylow -subgroup of  is 

G
p

p G s -conditionally 
permutable in G , then  is -supersoluble. G p

Corollary 2.1.4. [11, Theorem 1.3]. Let  be a 
-soluble group and  a Sylow -subgroup of 
. Suppose that every member of some fixed 

G
p P p
G

( )dM P  is -quasinormal in , then  is -
supersoluble.  

SS G G p

Following [17], a subgroup H  of a group G  is 
said to be s -semipermutable in G  if for every 
prime  with ( )p 1p H,| | = , H  permutes with every 
Sylow -subgroup of .  p G

Corollary 2.1.5. Let  be a -soluble group 
and  a Sylow -subgroup of . Suppose that 
every member of some fixed 

G p
P p G

( )dM P  is s -
semipermutable in , then G  is -supersoluble.  G p

Theorem 2.2. Let  be a -soluble group 
and a Sylow -subgroup of G . If  is -
nilpotent and every member of some fixed 

G p
P p ( )GN P p

M ( )d P  
is s - c -permutably embedded in , then G  is -
nilpotent.  

G p

Proof. Suppose that the theorem is false and let 
 be a counterexample of minimal order. Then:  G

(1) ( ) 1pO G′ = .  
Assume that . Then 

 is a Sylow -subgroup of 
 and by [2, Lemma 3.6.10]  

( ) 1pO G′ ≠

( ) ( )p pPO G O G′ ′/ p
( )pG O G′/

( ) ( ( ) ( )) ( ) ( ) ( )G p pN P O G O G′ ′= /
pG O G p pN PO G O G
′ ′ ′/ /  

is -nilpotent. Since  p

1( ) ( ) ( ) ( )p p p pPO G O G PO G O G′ ′ ′ ′| / : / |=  

1( ) ( )p pPO G PO G p′ ′=| : |=

)

, 

1 ( ) ( )p pPO G O G′ ′/  is a maximal subgroup of 
, so  ( ) ( )p pPO G O G′ ′/

1 ( ) ( )p pPO G O G′ ′/ ( ( ) ( )d p pM PO G O G′ ′∈ / , 
and there must be a subgroup  such that 
it holds. By the hypothesis,  is 

1 ( )dP M P∈

1P s - -permutably 
embedded in .  Then  by  Lemma 1.1, we see that  

c
G
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1 ( ) ( )p pPO G O G′ ′/  is s - c -permutably embedded in 
. Thus the hypothesis holds for . 

The minimal choice of  implies that  is 
-nilpotent and consequently  is -nilpotent, a 

contradiction. 

( )pG O G′/ ( )pG O G′/

G ( )pG O G′/

p G p

(2) , where  (i=1,…,r) 
is a minimal normal subgroup of  of order  (see 
the proof (3) of Theorem 2.1).  

1( )pO G R R= × ×" r iR
G p

(3) The final contradiction.  
Since  is an abelian group of expo-

nent ,  by (2). 
Moreover, by (1) and [2, Theorem 1.8.18], 

. Hence  and there-
fore  is -nilpotent. The final contra-
diction completes the proof.  

( )G iG C R/

1p −
1

( ) ( ( ))d
G i G pi

P C R C O G
=

≤ =∩

( ( )) ( )G p pC O G O G≤ ( )pP O G=

( )GG N P= p

Corollary 2.2.1. Let  be a -soluble group 
and  a Sylow -subgroup of . If  is -
nilpotent and every member of some fixed 

G p
P p G ( )GN P p

( )dM P  is 
s -conditionally permutable in , then  is -
nilpotent.  

G G p

Corollary 2.2.2. Let  be a prime dividing the 
order of G  and 

p
H  a -soluble normal subgroup 

of  such that  is -nilpotent. Suppose that 
 is a Sylow -subgroup of 

p
G G H/ p

P p H . If  is -
nilpotent and every member in 

( )GN P p
( )dM P  is s -

conditionally permutable in G , then  is -
nilpotent.  

G p

Proof. Since ( ) ( )H GN P N P≤ ,  is -
nilpotent. By Lemma 1.1(1), every member in 

( )HN P p

( )dM P  is s - c -permutably embedded in H . Hence 
by Theorem 2.2, H  is -nilpotent. Let  be the 
normal Hall -subgroup of 

p N
p′ H . Then . We 

claim that G N  (with respect to
N G�

/ H N/ ) satisfies the 
hypothesis of the corollary. In fact, H N G N/ /� , 

 is -nilpotent and 

 is -nilpotent. Let 

( ) ( )N/ ≅G N H G H/ / / p

( ) ( )G N GN NP N N P N N/ / = / p 1P  

be a maximal subgroup of P , where 1P ∈ ( )dM P . 
Obviously, there exists a 1P ∈ ( )dM P  such that 

1P N N P/ = . Since  is 1P s - -permutably embedded 
in ,  is 

c
G 1P N N/ s - c -permutably embedded in 

 by Lemma 1.1. Hence our claim holds. If 
, then G N  is -nilpotent by induction. It 

follows that G  is -nilpotent. If , then 

G N/
1N ≠ / p

p 1N =
H P=  is a -group. In this case,  is 

-nilpotent. This completes the proof.  
p ( )GG N P=

p
Theorem 2.3. Let  be a saturated formation 

containing the class  of all supersoluble groups. A 
group  if and only if there exists a soluble 

normal subgroup 

F

U
G∈F

H  of G  such that G  and 
for every Sylow subgroup  of 

H/ ∈F
P H , every member 

of ( )dM P  is s - c -permutably embedded in .  G
Proof. The necessary is obvious. We only need 

to prove the sufficiency. Suppose that it is false and 
let  be a counterexample of minimal order. Let  
be the largest prime divisor of 

G q
H| |  and Q  be a sy-

low -subgroup of q H . Then:  
(1) Q .  G�
By Lemma 1.1(1), every member of ( )dM P  is 

s - c -permutably embedded in H . Hence by Theo-
rem 2.1, H  is supersoluble. It follows that Q .  G�
(2) Q  is a Sylow -subgroup of .  q G

Suppose that  is not a Sylow -subgroup of 
. Let  be the smallest prime dividing 

Q q
G p G Q| / |  
and  the largest prime dividing . Further-
more,  is supersoluble and 
Lemma 1.1 shows that G Q

r G Q| / |
( ) ( )G Q H Q G H// / / =

/  satisfies the condition 
of the Theorem and by the choice of , G G Q/  is 
supersoluble. So G Q/  contains two subgroups 

1M Q/  and 2M Q/  with  and 1G M p| : |=

2G M r| : |= . By Lemma 1.1, ( )  satis-
fies the condition. By the choice of , 

( 1iM Q i, = ,2)
G ( 1 2)iM i = ,  

is supersoluble. Now by Lemma 1.5, G  is super-
soluble, a contradiction. Then (2) holds.  

(3) Every minimal normal subgroup of  con-
tained in Q  is of order q .  

G

Let  be an arbitrary minimal normal sub-
group of G  contained in Q . Since , we 
can, without loss of generality, assume that , 
where 

N
( )N QΦ

1N Q

1Q ∈ ( )dM P . Let . Then 1 1N N Q= ∩

1 1 1 1 .N N N N Q NQ Q Q Q q1| : |=| : ∩ |=| : |=| : |=  
Hence  is the maximal subgroup of  and 

so . Since  is 
1N N

1N N� 1Q s - -permutably embedded 
in , there exists an 

c
G s -conditionally permutable 

subgroup A  of  such that  is a Sylow -
subgroup of 

G 1Q q
A . This means that for an arbitrary 

prime divisor  of p G| |  with , there exits a 
Sylow -subgroup  of  such that 

q p≠
p P G AP PA= . 

Since  is the maximal subgroup of  and 1N N

1 1N N Q N A N AP N= ∩ ≤ ∩ ≤ ∩ ≤ ,  
or 

1N A NP= ∩
N N AP= ∩ . If N N AP= ∩ , then N AP≤  

and hence 1 1Q Q N Q AP AP= ≤ = . This implies 

1Q Q= , which is impossible. This shows that 

1N N AP AP= ∩ �  and therefore 1( )GA N N≤ , so 

1 ( )GQ Q N N N1= ≤ . Since  is a Sylow q -
subgroup of G . then  and so . Hence 

 is a cyclic subgroup of order q .  

Q

1N G� 1 1N =
N

(4) ( ) 1Q G∩Φ = .  
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Assume  and let  be a mini-
mal normal subgroup of  contained in 

( ) 1Q G∩Φ ≠ N
G ( )Q G∩Φ . 

Then, clearly, G N  (with respect to / H N/ ) satisfies 
the hypothesis. Hence  by the choice of G . 
It follows from (3) and Lemma 1.2 that 

G N/ ∈F
G∈F  a 

contradiction.  
(5) , where   is a 

minimal normal subgroup of G  of order .  
1 rQ R R= × ×" iR ( 1 )i r= , ,"

p
It follows directly from Lemma 1.4.  
(6) The final contradiction.  
It is easy to see that G Q/  satisfies the hypothe-

ses. Hence G Q/ ∈F . Since every chief factor of  
contained in Q  is a cyclic group of order . By 
Lemma 1.2, we obtain that G . The final contra-
diction completes the proof.  

G
q

∈F
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Corollary 2.3.1. Let  be a saturated forma-
tion containing the class  of all supersoluble 
groups. A group G  if and only if there exists a 
soluble normal Hall subgroup 

F

U
∈F

H  of G  such that 
 and for every Sylow subgroup  of G H/ ∈F P H , 

every member of ( )dM P  is s -conditionally permu-
table in .  G

Theorem 2.4. Let  be a saturated formation 
containing the class of all supersoluble groups. A 
group  if and only if there exists a soluble 
normal subgroup 

F

G∈F
H  of G  such that  and, 

for every Sylow -subgroup  of 
G H/ ∈F

p P ( )F H  satisfying 
, every member of ( ( ) )G F H p| : |, =1 ( )dM P  is s -

-permutably embedded in .  c G
Proof. The necessary is obvious. We only need 

to prove the sufficiency. Suppose that the assertion 
is not true and let  be a counterexample of mini-
mal order. Let  be an arbitrary Sylow -subgroup 
of 

G
P p

( )F H . Then  char P ( )F H G�  and so . 
Since  char , 

P G�
( )PΦ P G� ( )P GΦ � . We now pro-

ceed the proof as follows:  
(1) .  ( ) 1PΦ =
Assume that . Obviously,  ( ) 1PΦ ≠

( ( )) ( ( ))G P H P G H/Φ / /Φ ≅ / ∈F . 
Let ( ( ))F H P/Φ ( )T P= /Φ , then ( )F H T⊆ . 

On the other hand, since Φ ⊆ , T  is nilpo-
tent by [18, Theorem IV 3.7]. It follows that 

 and so . Since 

, where 

( ) ( )P GΦ

P

( )T F H⊆ ( )T F H=

1
( ) d

ii
P

=
Φ =∩ 1 ( )dP M P∈ ,  is a 

maximal subgroup of . Obviously, 
1 ( )P P/Φ

( )P P/Φ
( ( ))dM P P/Φ 1 ) ( )}dP P P P/Φ , , /Φ"

1
={ (  and  

( ( ) ( ( )) ) ( ( ) )G P F H P p G F H p| /Φ : /Φ |, = | : |, = . 
Since  is 1P s - -permutably embedded in  by 
hypotheses, by Lemma 1.1,  is 

c G

1 ( )P P/Φ s -  permu-
tably embedded in . Let  be a 

maximal subgroup of Sylow -subgroup 

c
( )G P/Φ 1 ( ) ( )Q P PΦ /Φ

q
( ) ( )Q P PΦ /Φ  of ( ) ( ) ( ( ))F H P F H P/Φ = /Φ , where 

q p≠ ,  is a Sylow q -subgroup of Q ( )F H  and 

1Q ∈ ( )dM Q . By the hypothesis,  is 1Q s - c -
permutably embedded in G . Hence by Lemma 1.1, 

1 ( ) ( )Q P PΦ /Φ  is s - -permutably embedded in 
. This shows that  with respect to 

c
( )G P/Φ ( )G P/Φ
( )H P/Φ  satisfies the hypothesis. The minimal 

choice of G  implies that . Then, since 
 is a saturated formation, we obtain that 

( )G P/Φ ∈F
F G∈F , a 
contradiction.  

(2) Every minimal normal subgroup of  con-
tained in  is of order .  

G
P p

Let  be an arbitrary minimal normal sub-
group of  contained in . Since , 

. Without loss of generality, we may as-
sume that , where 

N
G P ( ) 1PΦ =

P( )N Φ

1N P 1P ∈ ( )dM P . Let 

1N N P 1N N1= ∩ . Since p| : |= ,  is a maximal 
subgroup of  and so . Since  is 

1N
N 1N N� 1P s - c -

permutably embedded in , there exits an G s -
conditionally permutable subgroup A  of G  such 
that  is a Sylow -subgroup of 1P p A . This means 
that for an arbitrary prime divisor  of  with q G| |
p q≠ , there exits a Sylow -subgroup  of G  

such that 
q Q

AQ QA= . Since  is a maximal sub-
group of  and , 

1N
N 1 1N N P N AQ N≤= ∩ ≤ ∩

1N A NQ= ∩  or N N AQ= ∩ . If , 
then 

N N AQ= ∩
N AQ≤  and hence . 

This implies 
1 1P P N P AQ AQ= ≤ =

1P P= , which is impossible. Hence we 
may assume that 1N N AQ= ∩ . Because , 

. It follows that 
N G�

1N AQ� 1( )GA N N≤  and so 

1 1( )GP P N N N= � . Since ,  is 
also a Sylow -subgroup of . This shows that 

. Since  is a minimal normal subgroup of 
G, 

( ( ) ) 1G F H p| : |, = P
p G

1N G� N

1 1N =  and thus N is a cyclic subgroup of order p.  
(3) The final contradiction.  
By (2), we know that 1( ) sF H R R= × ×" , 

where  iR ( 1 )i s= , ,"  is a minimal normal subgroup 
of  of order . Since , 

 is cyclic. Therefore,  

G p ( ) ( )G i iG C R Aut R/ �

( )G iG C R/
1

( (s
G ii

G C R
=

/ ∩ ))

( ( ( ))GG C F H= / F∈ , we have . 
Therefore,  

( ( ))GG C F H/ ∈F
( ( )) ( ( ( )))H GG C F H G H C F H/ = / ∩

∈F . Since ( )F H  is an abelian group, 
( ) ( ( ))HF H C F H⊆ . On the other hand, we have 

 for ( ( )) ( )HC F H F H⊆ H  is soluble. Hence, 
( ) ( ( ))HF H C F H= . This implies that . ( )G F H/ ∈F
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Consequently . The final contradiction com-
pletes the proof.  

G∈F

Corollary 2.4.1. Let  be a saturated forma-
tion containing the class of all supersoluble groups. 
A group  if and only if there exists a soluble 
normal subgroup 

F

G∈F
H  of G  such that  and, 

for every Sylow -subgroup  of 
G H/ ∈F

p P ( )F H  satisfying 
, every member of ( ( ) )G F H p| : |, =
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1 ( )dM P  is s -
conditionally permutable in .  G

Recall that a subgroup H  of G  is said to be a 
-maximal subgroup of  if 2 G H  is a maximal sub-

group of some maximal subgroup of G . A group  
is 

G
4A -free if there are no subgroups in G  for which 

4A  is an isomorphic image. 
Theorem 2.5. Let  be an G 4A -free -soluble 

group and  the minimal prime dividing . Then 
 is -nilpotent if and only if there exists a normal 

subgroup 

p
p G| |

G p
H  of  such that G H  is -nipotent 

and every -maximal subgroup of all Sylow -
subgroups of H is 

G / p
2 p

s - -permutably embedded in G.  c
Proof. The necessity is obvious. We only need 

to prove the sufficiency. Suppose that the assertion 
is false and let G  be a counterexample of minimal 
order. Then  

(1) .  ( ) 1pO G′ =

Suppose that ( ) 1pO G′ ≠ . Obviously, 
( ( )) ( ( ) ( ))

( ) ( ( ) )
p p p

p

G O G HO G O G

G H HO G H
′ ′ ′

′

/ / /

≅ / / /

≅
 

is -nilpotent. Let  be a Sylow -
subgroup of 

p ( )pR O G′/ p
( ) ( )p pHO G O G′ ′/  and  a -

maximal subgroup of . Then there must be 
a -maximal subgroup  of some sylow -
subgroup of 

( )pP O G′/ 2
( )pR O G′/

2 1P p
H  such that . By Lemma 

1.1, every -maximal subgroup of  is 
1 ( )pP PO G′=

2 ( )pR O G′/ s -
-permutably embedded in . Thus the 

hypothesis holds for . By the choice of G , 
 is -nilpotent. It follows that  is -

nilpotent, a contradiction.  

c ( )pG O G′/

( )pG O G′/

( )pG O G′/ p G p

(2) There exists an unique minimal normal sub-
group  of G  and .  L ( ) ( )G pL C L O G= =

Let  be an arbitrary minimal normal sub-
group of G . If , then by Lemma 1.1,  
satisfies the hypothesis. If , then 

L
L H⊆ G L/

L H 1H L∩ = . 
Let ϕ  be an isomorphism between HL L/  and H  
such that ( )hL hϕ = . Suppose that U  is an arbi-
trary -maximal subgroup of a Sylow -subgroup 
of 

L/
2 p

HL L/ , then (V U L)ϕ= /  is a -maximal sub-
group of a Sylow -subgroup of 

2
p H  and U VL= . 

By Lemma 1.1, U  is L/ s - c -permutably embedded 

in . Hence the hypothesis holds for . Since 
the class of all -nilpotent groups is a saturated 
formation,  is the unique minimal normal sub-
group of  and . By (1) and the hypothe-
sis,  is a -group and so . 
Thus (2) holds.  

G L/ G L/
p

L
G ( )L GΦ

L p ( ) ( )G pL C L O G= =

(3) G L= M , where 3p L| |  and M  is -
nilpotent.  

p

Since , there exists a maximal sub-
group 

( )L GΦ
M  of  such that G L . Since  is an 

elementary abelian -group , so 
G M= L

p G L= M  and 
M G L≅ /  is -nilpotent. It is easy to see that  is 

-nilpotent  by  Lemma 1.7  if 
p G

p 3p L| | , a contra-
diction. 

(4) The final contradiction.  
Suppose that pG  is a Sylow -subgroup of 

. Then there exists a Sylow -subgroup 
p

G p pM  of 

M  such that p pG LM= . Since , there ex-
ists a -maximal subgroup  of 

3L p| |

2 1P pG  such that 

1pM P≤ . Let 2 1P P H= ∩ . Obviously, 

p pG H H∩ =  is a Sylow -subgroup of p H  and 

2 1 1 pP P H P H= ∩ = ∩ . Since , 1 1p p pG LM LP H P= = =
2

2 1 1p pH P H P P p| : |=| : |=  and so  is a 2 -
maximal subgroup of 

2P

pH . Hence by hypothesis,  
is 

2P
s - -permutably embedded in G . So there exists 

an 
c

s -conditionally permutable subgroup A  of G  
such that  is a Sylow -subgroup of 2P p A . Then for 
an arbitrary prime divisor  of  with q G| | q p≠ , 
there exists a Sylow -subgroup  of G  such 
that

q qG

q qAG G A= . Let 1L L P2= ∩ . Then  

1 2 2L L L L P LP P2| : |=| : ∩ |=| : |=  

1 2 1 2( )L P H P LP H P=| ∩ : |=| ∩ : |= 2
2pH P p| : |= , 

which means that  is a -maximal subgroup of 
. Since 

1L 2
L 1 2 qL L P L A L AG= ∩ = ∩ = ∩ , . 
It follows that . On the other hand, 
since 

1 qL AG�

1( )q GG N L⊆

2L P L H P P1 1∩ = ∩ ∩ �  and , 
. Hence 

2L P L∩ �

1 pL G� 1 1L PL G=� . But since  is the 
minimal normal subgroup of G , , which con-
tradicts to 

L

1 1L =
3p L| | . The final contradiction com-

pletes the proof.  
Corollary 2.5.1. Let  be an G 4A -free -

soluble group and the minimal prime dividing 
p

p
G| | . Then  is -nilpotent if and only if there 

exists a normal subgroup 
G p

H  of  such that G H  
is -nilpotent and every -maximal subgroup of 
all Sylow -subgroups of 

G /
p 2

p H  is s -conditionally 
permutable in G .  



Fan Cheng, Jianhong Huang, Wenjuan Niu, Lifang Ma 
 

Corollary 2.5.2. Let  be an G 4A -free soluble 
group. Then G  is a Sylow tower group of super-
soluble type if and only if there exists a normal sub-
group H  of G  such that  is a Sylow tower 
group of supersoluble type and every -maximal 
subgroup of all Sylow subgroups of 

G H/
2

H  is s - c -
permutably embedded in G .  

                   Проблемы физики, математики и техники, № 2 (3), 2010 60 

Proof. Suppose that  is a minimal prime di-
visor of . By Theorem 2.5,  is -closed. Let 

p
G| | G p′

M  be a Hall -subgroup of . Then p′ G M  is a Sy-
low tower group of supersoluble type by induction 
and consequently  is a Sylow tower group of su-
persoluble type.  

G

Theorem 2.6. Let  be an G 4A -free -soluble 
group and the minimal prime dividing . Then 

 is -nilpotent if and only if there exists a normal 
subgroup 

p
p G| |

G p
H  of G  such that G H  is -nilpotent 

and every -maximal subgroup of all Sylow -
subgroups  of  

/ p
2 p

( )pF H  is s - c -permutably embed-
ded in G .  

Proof. The necessity is obvious. We only need 
to prove the sufficiency. Assume that the assertion is 
false and let  be a counterexample of minimal 
order. Then  

G

(1) .  ( ) ( ) 1pO G G′ = Φ =

Let . Suppose that { ( ) ( )}pT O G G′∈ ,Φ 1T ≠ . 
Obviously,  

( ) ( ) G HT≅ / ≅G T HT T/ / / )( ) (G H HT H/ / /  
is -nilpotent. By Lemma 1.6 and [3, Corollary 
1.8.1], we have that 

p
( )pF HT T/ ( )pF H T T= / . As-

sume that  is a Sylow -subgroup of R T/ p
(p )F HT T/  and  is an arbitrary -maximal 

subgroup of . Then there must be some -
maximal subgroup  of a Sylow -subgroup of 

P T/ 2
R T/ 2

1P p
( )pF H  such that . By Lemma 1.1, every 

-maximal subgroup of  is 
1P PT=

2 R T/ s - -permutably 
embedded in G T . Hence the hypothesis holds for 

. By the choice of G ,  is -nilpotent and 
so G is -nilpotent, a contradiction. Thus (1) holds.  

c
/

G T/ G T/ p
p

(2) For an arbitrary minimal normal subgroup 
 of G , we have that .  L L H⊆

Assume that  is an arbitrary minimal normal 
subgroup of G . If , then 

L
L H ( )pF H L∩  

1H L= ∩ = . Let ϕ  be an isomorphism between 
HL L/  and H  such that ( )hL hϕ = . Then 

( ( ) )p p ( ) ( ( ) )pF HL L H F H L LFϕ ϕ/ = = / . It follows 
that ( ) ( )p pF HL L F H L L/ = / . Suppose that U  is 
an arbitrary 2 -maximal subgroup of a Sylow -
subgroup of 

L/
p

( ) ( )p pF HL L F H L L/ = / . Then 
( )LV Uϕ= /  is a 2 -maximal subgroup of some Sy-

low -subgroup of p ( )pF H  and U . By 
Lemma 1.1, U  is 

VL=

L/ s - -permutably embedded in 
. Hence the hypothesis holds on G L . By the 

choice of G ,  is -nilpotent and so 

c
G L/ /

G L/ p

( )L∩G G H≅ /  is -nilpotent, a contradiction.  p
(3) ( ) ( ) ( )p pF H O H F H= = =  

              ( ) ( ) ( )pF G O G Soc G= = = . 
It is directly obtained from (1) and (2).  
(4) Let  be an arbitrary minimal normal sub-

group of . Then .  
L

G ( )L Z G⊆
In view of (1), there exists a maximal subgroup 

M  of G  such that G L= M . Assume that 
3p L| | . Let pM  be a Sylow -subgroup of p M  

and pG  a Sylow -subgroup of  such that p G

p pM G⊆ . Obviously, . So 
there exists a -maximal subgroup  of 

3
p pG M L p| : |=| |

2 1P pG  such 
that 1pM P≤ . By (2), we have that . Let ( )L F H⊆

2 1 ( )P P F H= ∩ . Clearly, ( ) ( )p pG F H F H∩ =  is a 
Sylow -subgroup of p ( )F H  and  

2 1 1( ) ( ) pP P F H P F H= ∩ = ∩ . 
Since 1 1( )p p pG LM LP F H P= = =  and  

2
2 1 1( ) ( )p pF H P F H P P p| : |=| : |= , 

2 1 ( )P P F H= ∩  
is a 2 -maximal subgroup of ( ) pF H . By hypothesis, 

 is 2P s - -permutably embedded in G . Hence there 
exists an 

c
s -conditionally permutable subgroup A  

such that  is a Sylow -subgroup of 2P p A . Then for 
an arbitrary prime divisor  of  with q G| | q p≠ , 
there exists a Sylow q -subgroup  of  such that qG G

q qAG G A= . Let 1 2PL L= ∩

2

. Then  

1 2 2L L L L P LP P| : |=| : ∩ |=| : |=

1 2( ( ))L P F H P=| ∩ : |=
2

1 2( ) ( ) pF H P F H P2LP p=| : |=∩ : |=| , 
which implies that  is a -maximal subgroup of 
L. Since 

1L 2

1 2 qL L P L A L AG= ∩ = ∩ = ∩ , . 
It follows that . On the other hand, 
since 

1 qL AG�

1( )q GG N L⊆

2L P L H P P1 1∩ = ∩ ∩ �  and , 
. Hence . But since  is a 

minimal normal subgroup of G , , which con-
tradicts to 

2L P L∩ �

1 pL G� 1 1L PL G=� L

1 1L =
3p G| | . This contradiction shows that 

L p| |=  or . Let T  be a Hall -subgroup of . 
Then  is a nilpotent subgroup of G  and so 

. On the other hand, since 

2p p′ G
LT
( )GL C T⊆ pL G⊆ , 

( ) 1pL Z G∩ ≠ . Hence L p| |=  and .  ( )L Z G⊆
(4) The final contradiction.  
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8. Guo, W. X -semipermutable subgroups of 
finite groups / W. Guo, K.P. Shum, A.N. Skiba // 
J. Algebra. – 2007. – Vol. 315. – P. 31–41.  

By (3) and (4), we have that 
( ) ( ) ( )F G Soc G Z G= ⊆ . It follows that ( )G F G=  

is nilpotent. The final contradiction completes the 
proof.  9. Huang, J. -condiyionally permutable sub-

groups of finite groups / J. Huang, W. Guo // Chin. 
Ann. Math. – 2007 . – Vol. 28A (1). – P. 17–26 (in 
chinese).  

S
Corollary 2.6.1. Let  be an G 4A -free -

soluble group and the minimal prime dividing 
. Then  is -nilpotent if and only if there 

exists a normal subgroup 

p
p

G| | G p
H  of  such that  

is -nilpotent and every -maximal subgroup of 
all Sylow -subgroups of 

G G H/
p 2

p ( )pF H  is s -
conditionally permutable in .  G

10. Chen, S. - C -permutably embedded Sub-
groups of finite groups / S. Chen, W. Guo // Int. J. 
Contemp. Math. Science. – 2008. – Vol. 3, № 20. – 
P. 951–960. 

S

11. The influence of -quasinormality of 
some subgroups on the structure of finite groups / 
Li S. [et al.] // J. Algebra. – 2008. – Vol. . – 
P. 4275–4287.  
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