- МАТЕМАТИКА -

УДК 512.542

ВЛИЯНИЕ S-C-ПЕРЕСТАНОВОЧНО ПОГРУЖЕННЫХ ПОДГРУПП НА СТРОЕНИЕ КОНЕЧНОЙ ГРУППЫ

Фан Ченг¹, Янхонг Хуанг^{1,2}, Веньян Нью¹, Лифанг Ма¹

¹Сюйчжоуский нормальный университет, Сюйчжоу, Китай ²Китайский университет науки и технологии, Хефей, Китай

THE INFLUENCE OF S-C-PERMUTABLY EMBEDDED SUBGROUPS ON THE STRUCTURE OF FINITE GROUPS

Fan Cheng¹, Jianhong Huang^{1,2}, Wenjuan Niu¹, Lifang Ma¹

¹Xuzhou Normal University, Xuzhou, China ²University of Science and Technology of China, Hefei, China

Подгруппа H группы G называется *s*-*c*-перестановочно погруженной в G, если каждая силовская подгруппа из H является *s*-условно перестановочной подгруппой в G. В данной работе получены некоторые новые характеризации *p*-сверхразрешимости или *p*-нильпотентности для конечных групп при условии, что некоторые из её максимальных или 2-максимальных подгрупп силовских подгрупп являются *s*-*c*-перестановочно погруженными. Также в данной работе обобщен ряд известных результатов.

Ключевые слова: конечная группа, s-c-перестановочно погруженные подгруппы, 2-максимальные подгруппы, силовская подгруппа, p-сверхразрешимая подгруппа, p-нильпотентная подгруппа.

A subgroup H of a group G is said to be *s*-*c*-permutably embedded in G if every Sylow subgroup of H is a Sylow subgroup of some *s*-conditionally permutable subgroup of G. In this paper, some new characterizations for a finite group to be *p*-supersoluble or *p*-nilpotent are obtained under the assumption that some of its maximal subgroups or 2-maximal subgroups of Sylow subgroups are s-c-permutably embedded. A series of known results are generalized.

Keywords: finite group, s-c-permutably embedded subgroups, 2-maximal subgroups, Sylow subgroup, p-supersoluble group, p-nilpotent group.

Introduction

Throughout this paper, all groups considered are finite and G denotes a finite group. The terminology and notation are standard, as in [1] and [2].

Let *A* and *B* be subgroups of *G*. *A* is said to be permutable with *B* if AB = BA. If *A* is permutable with all subgroups of *G*, then *A* is said to be a permutable subgroup [1] (or quasinormal subgroup [3]) of *G*. The permutable subgroups have many interesting properties. For example, Ore [3] proved that every permutable subgroup of a finite group is subnormal. Itô and Szép [4] proved that for every permutable subgroup *H* of a finite group *G*, *H*/*H*_{*G*} is nilpotent.

However, in general, two subgroups H and Tof G may not be permutable in G but G may contain an element x such that $HT^x = T^x H$. Based on the observations, Guo, Shum and Skiba introduced the concept of conditionally permutable subgroup (in more general, the concept of X-permutable subgroup) [5]–[7]: let X be a non-empty subset of G. Then a subgroup A of G is said to be conditionally permutable (X-permutable) in G if for every subgroup T of G, there exists some $x \in G$ ($x \in X$ respectively) such that $AT^{x} = T^{x}A$. By using the conditionally permutable subgroups and © Fan Cheng, Jianhong Huang, Wenjuan Niu, Lifang Ma, 2010 54

X-permutable subgroups, many authorse have obtained some new elegant results on the structure of groups (cf. [5]–[8]).

By considering some local conditionally permutable subgroups, Huang and Guo [9] introduced the concept of *s*-conditionally permutable subgroup: a subgroup *H* of *G* is said to be *s*-conditionally permutable in *G* if, for every Sylow subgroup *T* of *G*, there exists some $x \in G$ such that $HT^x = T^xH$. By Sylow's theorem, we see that a subgroup *H* of *G* is *s*-conditionally permutable in *G* if and only if for every $p \in \pi(G)$, there exists a Sylow *p*subgroup *T* such that HT = TH. As a development of *s*-conditionally permutable subgroups, Chen and Guo [10] introduced the concept of *s*-*c*-permutably embedded subgroups:

Definition 0.1 ([10, Definition 1.1]). A subgroup H of G is said to be s - c-permutably embedded in G if every Sylow subgroup of H is a Sylow subgroup of some s-conditionally permutable subgroup of G.

Clearly, all permutable subgroups, *s*-permutable subgroups and *s*-conditionally permutable subgroups are *s*-*c*-permutably embedded. But the converse is not true in general (see, for example, Example 1-2 in [10]). **Definition 0.2** ([11], Definition 1.2). Let d be the smallest generator number of a p-group P and $M_d(P) = \{P_1, \dots, P_d\}$ be a set of maximal subgroups of P such that

$$\bigcap_{i=1}^{a} P_i = \Phi(P) \, .$$

Such subset $M_d(P)$ is not unique for a fixed P in general. Let M(P) denotes the family of all maximal subgroups of P. We know that $|M(P)| = (p^d - 1)/p - 1$, $|M_d(P)| = d$ and $\lim_{n \to \infty} [(p^d - 1)/p - 1]/d = \infty$, so $|M(P)| \gg |M_d(P)|$.

The purpose of this paper is to go further into the influence of s - c-permutably embedded subgroups on the structure of finite groups. Some new results are obtained and a series of known results are generalized.

1 Preliminaries

Recall that a class \mathfrak{F} of groups is called a formation if \mathfrak{F} is closed under taking homorphic images and subdirect products. A formation \mathfrak{F} is said to be saturated if it contains every group *G* with $G/\Phi(G) \in \mathfrak{F}$. It is well known that the class of all supersoluble groups is a saturated formation.

For the reader's convenience, we cite some results which are useful in the sequel.

Lemma 1.1 [10, Lemma 2.2]. Suppose that G is a group, $K \triangleleft G$ and $H \leq G$. Then:

1) If H is s - c-permutably embedded in G, then HK/K is s - c-permutably embedded in G/K.

2) If $K \le H$ and H/K is s - c-permutably embedded in G/K, then H is s - c-permutably embedded in G.

3) If HK/K is s - c-permutably embedded in G/K and (|H|, |K|) = 1, then H is s - c-permutably embedded in G.

4) If H is s - c-permutably embedded in G, then $H \cap K$ is s - c-permutably embedded in K.

Lemma 1.2 [12, Lemma 2.3]. Let \mathfrak{F} be a saturated formation containing all supersoluble groups and G a group with a normal subgroup N such that $G/N \in \mathfrak{F}$. If N is cyclic, then $G \in \mathfrak{F}$.

Lemma 1.3 [13, Theorem IV 4.7]. If P is a Sylow p-subgroup of a group G for some $p \in \pi(G)$ and $N \triangleleft G$ such that $P \cap N \leq \Phi(P)$, then N is pnilpotent.

Lemma 1.4 [14, Lemma II 7.9]. Let N be a nilpotent normal subgroup of a group G. If $N \cap \Phi(G) = 1$, then N is a direct product of some minimal normal subgroups of G.

Lemma 1.5 [15]. Let p_1 be the minimal prime dividing |G| and p_s the maximal prime dividing |G|. If G possesses two supersoluble subgroups

Проблемы физики, математики и техники, № 2 (3), 2010

H and *K* with $|G:H| = p_1$ and $|G:K| = p_s$, then *G* is supersoluble.

Lemma 1.6 [2, Theorem 1.8.6]. Let H, T be subgroups of G, $N_{G/O_{p'}(G)}(PO_{p'}(G)/O_{p'}(G))$ and $T \subseteq O_p(G)$, then

$$HT/T \subseteq F_p(G/T)$$

if and only if $H \subseteq F_p(G)$.

Lemma 1.7 [16]. Let p be the minimal prime dividing |G|. Suppose G is A_4 -free and L is a normal subgroup of G. If G/L is p-nilpotent and $p^3 \nmid |L|$, then G is p-nilpotent.

2 Main results

Theorem 2.1. Let G be a p-soluble group and P a Sylow p-subgroup of G. Suppose that every member of some fixed $M_d(P)$ is s-cpermutably embedded in G, then G is psupersoluble.

Proof. Suppose that the Theorem is false and let G be a counterexample of minimal order. We proceed the proof as follows:

(1) $O_{p'}(G) = 1$ and $\Phi(O_p(G)) = 1$.

Assume that $O_{p'}(G) \neq 1$. Then $PO_{p'}(G)/O_{p'}(G)$ is a Sylow *p*-subgroup of $G/O_{p'}(G)$ and $G/O_{p'}(G)$ is *p*-soluble. Since

$$|PO_{p'}(G)/O_{p'}(G): P_{1}O_{p'}(G)/O_{p'}(G)| =$$

=|PO_{p'}(G): P_{1}O_{p'}(G)| = p,

 $P_1O_{p'}(G)/O_{p'}(G)$ is a maximal subgroup of $PO_{p'}(G)/O_{p'}(G)$. Let

$$P_1O_{n'}(G)/O_{n'}(G) \in M_d(PO_{n'}(G)/O_{n'}(G))$$

and there must be a subgroup $P_1 \in M_d(P)$ such that it holds. Since P_1 is s - c-permutably embedded in G, by Lemma 1.1, $P_1O_{p'}(G)/O_{p'}(G)$ is s - cpermutably embedded in $G/O_{p'}(G)$. Thus, the hypothesis holds for $G/O_{p'}(G)$. By the choice of G, $G/O_{p'}(G)$ is p-supersoluble. It follows that G is p-supersoluble, a contradiction.

Now assume that $\Phi(O_p(G)) \neq 1$. By the same way, we see that the hypothesis holds for $G/\Phi(O_p(G))$. The minimal choice of G implies that $G/\Phi(O_p(G))$ is p-supersoluble. Since the class of all p-supersoluble groups is a saturated formation, we obtain that G is p-supersoluble, a contradiction.

(2) Every minimal normal subgroup of G contained in $O_p(G)$ is of order p and $O_p(G) \cap \Phi(G) = 1$. Since *G* is *p*-soluble and $O_{p'}(G) = 1$, we have $O_p(G) \neq 1$. Let *N* be an arbitrary minimal normal subgroup of *G* contained in $O_p(G)$. By Lemma 1.1, we see that the quotient group *G/N* satisfies the hypothesis. The minimal choice of *G* implies that G/N is *p*-supersoluble. If $N \leq \Phi(P)$ then *G* is *p*-supersoluble, a contradiction. Thus $N \nleq \Phi(P)$. Since $\Phi(P) = \bigcap_{i=1}^{d} P_i$, where $P_i \in M_d(P)$, we may without loss of generality assume that $N \nleq P_1$. Let $N_1 = N \cap P_1$. Then

 $|N: N_1| = |N: N \cap P_1| = |NP_1: P_1| = |P: P_1| = p$. Hence, N_1 is a maximal subgroup of N. Since P_1 is s - c-permutably embedded in G, there exists an s -conditionally permutable subgroup A of G such that P_1 is a Sylow *p*-subgroup of *A*. Then for an arbitrary prime divisor q of |G| with $p \neq q$, there exits a Sylow q-subgroup Q of G such that AQ = QA. Since N_1 is a maximal subgroup of N and $N_1 = N \cap P_1 \leq N \cap A \leq N \cap AQ \leq N$, we have $N_1 = N \cap AQ$ that or $N = N \cap AQ$. If $N = N \cap AQ$, then $N \le AQ$ and so $P = P_1 N \le P_1 A Q = A Q$. This implies that $P = P_1$, which is impossible. Hence $N_1 = N \cap AQ$. It follows that $N_1 \triangleleft AQ$. consequently $Q \leq N_G(N_1)$. On the other hand, since $N_1 \triangleleft N$ and $N_1 \triangleleft P_1$, $N_1 \triangleleft P_1 N = P$. This implies that $N_1 \triangleleft G$. But since N is a minimal normal subgroup of G, $N_1 = 1$ and N is a cyclic subgroup of order p. It follows that $N \cap P_1 = 1$. By Huppert [13, Theorem I. 17, 4], there subgroup exists а Mof G such that G = NM and $N \cap M = 1$. Hence $N \nleq \Phi(G)$. It follows that $O_n(G) \cap \Phi(G) = 1$.

(3) $O_p(G) = R_1 \times \cdots \times R_r$, where R_i (i=1,...,r) is a minimal normal subgroup of G of order p.

It follows directly from (2) and Lemma 1.4.

(4) The final contradiction.

Since $G/C_G(R_i)$ is isomorphic with some subgroup of $Aut(R_i)$ which is a cyclic group,

$$G/C_G(O_p(G)) = G/(\bigcap_{i=1}^r C_G(R_i))$$

is *p*-supersoluble. On the other hand, since *G* is *p*-soluble and $O_{p'}(G) = 1$, $C_G(O_p(G)) \le O_p(G)$ by [2, Theorem 1.8.19]. Thus $G/O_p(G)$ is *p*-supersoluble. It follows from (3) that *G* is *p*-supersoluble. The final contradiction completes the proof.

As immediate corollaries of Theorem 2.1, we have the following:

Corollary 2.1.1. Let G be a p-soluble group and P a Sylow p-subgroup of G. Suppose that every member of some fixed $M_d(P)$ is sconditionally permutable in G, then G is psupersoluble.

Corollary 2.1.2. Let G be a soluble group. If every member of some fixed $M_d(P)$ is sconditionally permutable in G, for each prime p in $\pi(G)$ and a Sylow p-subgroup P of G, then G is supersoluble.

Corollary 2.1.3. [9, Lemma 4.1]. Let G be a p-soluble group. If every maximal subgroup of every Sylow p-subgroup of G is s-conditionally permutable in G, then G is p-supersoluble.

Corollary 2.1.4. [11, Theorem 1.3]. Let G be a p-soluble group and P a Sylow p-subgroup of G. Suppose that every member of some fixed $M_d(P)$ is SS-quasinormal in G, then G is p-supersoluble.

Following [17], a subgroup H of a group G is said to be *s*-semipermutable in G if for every prime *p* with (p, |H|) = 1, *H* permutes with every Sylow *p*-subgroup of *G*.

Corollary 2.1.5. Let G be a p-soluble group and P a Sylow p-subgroup of G. Suppose that every member of some fixed $M_d(P)$ is ssemipermutable in G, then G is p-supersoluble.

Theorem 2.2. Let G be a p-soluble group and P a Sylow p-subgroup of G. If $N_G(P)$ is pnilpotent and every member of some fixed $M_d(P)$ is s-c-permutably embedded in G, then G is pnilpotent.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. Then:

(1) $O_{p'}(G) = 1$.

Assume that $O_{p'}(G) \neq 1$. Then $PO_{p'}(G)/O_{p'}(G)$ is a Sylow *p*-subgroup of $G/O_{p'}(G)$ and by [2, Lemma 3.6.10]

 $N_{G/O_{p'}(G)}(PO_{p'}(G)/O_{p'}(G)) = N_G(P)O_{p'}(G)/O_{p'}(G)$ is *p*-nilpotent. Since

$$\begin{split} \mid & PO_{p'}(G)/O_{p'}(G) : P_{l}O_{p'}(G)/O_{p'}(G) \mid = \\ & = \mid PO_{p'}(G) : P_{l}O_{p'}(G) \mid = p \;, \end{split}$$

 $P_1O_{p'}(G)/O_{p'}(G)$ is a maximal subgroup of $PO_{p'}(G)/O_{p'}(G)$, so

 $P_1 O_{p'}(G) / O_{p'}(G) \in M_d(PO_{p'}(G) / O_{p'}(G)) ,$

and there must be a subgroup $P_1 \in M_d(P)$ such that it holds. By the hypothesis, P_1 is s - c-permutably embedded in G. Then by Lemma 1.1, we see that $P_1O_{p'}(G)/O_{p'}(G)$ is s - c-permutably embedded in $G/O_{p'}(G)$. Thus the hypothesis holds for $G/O_{p'}(G)$. The minimal choice of G implies that $G/O_{p'}(G)$ is p-nilpotent and consequently G is p-nilpotent, a contradiction.

(2) $O_p(G) = R_1 \times \cdots \times R_r$, where R_i (i=1,...,r) is a minimal normal subgroup of G of order p (see the proof (3) of Theorem 2.1).

(3) The final contradiction.

Since $G/C_G(R_i)$ is an abelian group of expo-

nent p-1, $P \leq \bigcap_{i=1}^{d} C_G(R_i) = C_G(O_p(G))$ by (2). Moreover, by (1) and [2, Theorem 1.8.18], $C_G(O_p(G)) \leq O_p(G)$. Hence $P = O_p(G)$ and therefore $G = N_G(P)$ is *p*-nilpotent. The final contradiction completes the proof.

Corollary 2.2.1. Let G be a p-soluble group and P a Sylow p-subgroup of G. If $N_G(P)$ is pnilpotent and every member of some fixed $M_d(P)$ is s-conditionally permutable in G, then G is pnilpotent.

Corollary 2.2.2. Let p be a prime dividing the order of G and H a p-soluble normal subgroup of G such that G/H is p-nilpotent. Suppose that P is a Sylow p-subgroup of H. If $N_G(P)$ is p-nilpotent and every member in $M_d(P)$ is s-conditionally permutable in G, then G is p-nilpotent.

Proof. Since $N_H(P) \le N_G(P)$, $N_H(P)$ is pnilpotent. By Lemma 1.1(1), every member in $M_d(P)$ is s-c-permutably embedded in H. Hence by Theorem 2.2, H is p-nilpotent. Let N be the normal Hall p'-subgroup of H. Then $N \triangleleft G$. We claim that G/N (with respect to H/N) satisfies the hypothesis of the corollary. In fact, $H/N \triangleleft G/N$, $(G/N)/(H/N) \cong G/H$ p-nilpotent is and $N_{G/N}(NP/N) = N_G(P)N/N$ is *p*-nilpotent. Let $\overline{P_1}$ be a maximal subgroup of \overline{P} , where $\overline{P_1} \in M_d(\overline{P})$. Obviously, there exists a $P_1 \in M_d(P)$ such that $P_1N/N = \overline{P}$. Since P_1 is s - c-permutably embedded in G, P_1N/N is s-c-permutably embedded in G/N by Lemma 1.1. Hence our claim holds. If $N \neq 1$, then G/N is p-nilpotent by induction. It follows that G is p-nilpotent. If N = 1, then H = P is a p-group. In this case, $G = N_G(P)$ is *p*-nilpotent. This completes the proof.

Theorem 2.3. Let \mathfrak{F} be a saturated formation containing the class \mathfrak{U} of all supersoluble groups. A group $G \in \mathfrak{F}$ if and only if there exists a soluble normal subgroup H of G such that $G/H \in \mathfrak{F}$ and for every Sylow subgroup P of H, every member of $M_d(P)$ is s - c-permutably embedded in G.

Proof. The necessary is obvious. We only need to prove the sufficiency. Suppose that it is false and let G be a counterexample of minimal order. Let q be the largest prime divisor of |H| and Q be a sylow q-subgroup of H. Then:

(1) $Q \triangleleft G$.

By Lemma 1.1(1), every member of $M_d(P)$ is s - c-permutably embedded in H. Hence by Theorem 2.1, H is supersoluble. It follows that $Q \triangleleft G$. (2) Q is a Sylow q-subgroup of G.

Suppose that Q is not a Sylow q-subgroup of G. Let p be the smallest prime dividing |G/Q| and r the largest prime dividing |G/Q|. Furthermore, (G/Q)/(H/Q) = G/H is supersoluble and Lemma 1.1 shows that G/Q satisfies the condition of the Theorem and by the choice of G, G/Q is supersoluble. So G/Q contains two subgroups M_1/Q and M_2/Q with $|G:M_1| = p$ and $|G:M_2| = r$. By Lemma 1.1, $(M_i,Q)(i = 1,2)$ satisfies the condition. By the choice of G, $M_i(i = 1,2)$ is supersoluble. Now by Lemma 1.5, G is supersoluble, a contradiction. Then (2) holds.

(3) Every minimal normal subgroup of G contained in Q is of order q.

Let N be an arbitrary minimal normal subgroup of G contained in Q. Since $N \not\leq \Phi(Q)$, we can, without loss of generality, assume that $N \not\leq Q_1$, where $Q_1 \in M_d(P)$. Let $N_1 = N \cap Q_1$. Then

 $|N: N_1| = |N: N \cap Q_1| = |NQ_1: Q_1| = |Q: Q_1| = q.$

Hence N_1 is the maximal subgroup of N and so $N_1 \triangleleft N$. Since Q_1 is s - c-permutably embedded in G, there exists an s-conditionally permutable subgroup A of G such that Q_1 is a Sylow qsubgroup of A. This means that for an arbitrary prime divisor p of |G| with $q \neq p$, there exits a Sylow *p*-subgroup *P* of *G* such that AP = PA. Since N_1 is the maximal subgroup of N and $N_1 = N \cap Q_1 \le N \cap A \le N \cap AP \le N$, $N_1 = A \cap NP$ or $N = N \cap AP$. If $N = N \cap AP$, then $N \le AP$ and hence $Q = Q_1 N \le Q_1 AP = AP$. This implies $Q = Q_1$, which is impossible. This shows that $N_1 = N \cap AP \triangleleft AP$ and therefore $A \leq N_G(N_1)$, so $Q = Q_1 N \le N_G(N_1)$. Since Q is a Sylow qsubgroup of G then $N_1 \triangleleft G$ and so $N_1 = 1$. Hence N is a cyclic subgroup of order q.

(4) $Q \cap \Phi(G) = 1$.

Assume $Q \cap \Phi(G) \neq 1$ and let *N* be a minimal normal subgroup of *G* contained in $Q \cap \Phi(G)$. Then, clearly, *G*/*N* (with respect to *H*/*N*) satisfies the hypothesis. Hence *G*/*N* $\in \mathfrak{F}$ by the choice of *G*. It follows from (3) and Lemma 1.2 that $G \in \mathfrak{F}$ a contradiction.

(5) $Q = R_1 \times \cdots \times R_r$, where R_i $(i = 1, \dots, r)$ is a minimal normal subgroup of G of order p.

It follows directly from Lemma 1.4.

(6) The final contradiction.

It is easy to see that G/Q satisfies the hypotheses. Hence $G/Q \in \mathfrak{F}$. Since every chief factor of G contained in Q is a cyclic group of order q. By Lemma 1.2, we obtain that $G \in \mathfrak{F}$. The final contradiction completes the proof.

Corollary 2.3.1. Let \mathfrak{F} be a saturated formation containing the class \mathfrak{U} of all supersoluble groups. A group $G \in \mathfrak{F}$ if and only if there exists a soluble normal Hall subgroup H of G such that $G/H \in \mathfrak{F}$ and for every Sylow subgroup P of H, every member of $M_d(P)$ is s-conditionally permutable in G.

Theorem 2.4. Let \mathfrak{F} be a saturated formation containing the class of all supersoluble groups. A group $G \in \mathfrak{F}$ if and only if there exists a soluble normal subgroup H of G such that $G/H \in \mathfrak{F}$ and, for every Sylow p-subgroup P of F(H) satisfying (|G:F(H)|, p) = 1, every member of $M_d(P)$ is sc-permutably embedded in G.

Proof. The necessary is obvious. We only need to prove the sufficiency. Suppose that the assertion is not true and let *G* be a counterexample of minimal order. Let *P* be an arbitrary Sylow *p*-subgroup of F(H). Then *P* char $F(H) \triangleleft G$ and so $P \triangleleft G$. Since $\Phi(P)$ char $P \triangleleft G$, $\Phi(P) \triangleleft G$. We now proceed the proof as follows:

(1) $\Phi(P) = 1$.

Assume that $\Phi(P) \neq 1$. Obviously,

$$(G/\Phi(P))/(H/\Phi(P)) \cong G/H \in \mathfrak{F}$$

Let $F(H/\Phi(P)) = T/\Phi(P)$, then $F(H) \subseteq T$. On the other hand, since $\Phi(P) \subseteq \Phi(G)$, *T* is nilpotent by [18, Theorem IV 3.7]. It follows that $T \subseteq F(H)$ and so T = F(H). Since $\Phi(P) = \bigcap_{i=1}^{d} P_i$, where $P_1 \in M_d(P)$, $P_1/\Phi(P)$ is a maximal subgroup of $P/\Phi(P)$. Obviously, $M_d(P/\Phi(P)) = \{P_1/\Phi(P), \dots, P_d/\Phi(P)\}$ and

 $(|G/\Phi(P): F(H/\Phi(P))|, p) = (|G:F(H)|, p) = 1.$ Since P_1 is s - c-permutably embedded in G by hypotheses, by Lemma 1.1, $P_1/\Phi(P)$ is s - c permutably embedded in $G/\Phi(P)$. Let $Q_1\Phi(P)/\Phi(P)$ be a maximal subgroup of Sylow *q*-subgroup $Q\Phi(P)/\Phi(P)$ of $F(H)/\Phi(P) = F(H/\Phi(P))$, where $q \neq p$, Q is a Sylow *q*-subgroup of F(H) and $Q_1 \in M_d(Q)$. By the hypothesis, Q_1 is s - c-permutably embedded in G. Hence by Lemma 1.1, $Q_1\Phi(P)/\Phi(P)$ is s - c-permutably embedded in $G/\Phi(P)$ with respect to $H/\Phi(P)$ satisfies the hypothesis. The minimal choice of G implies that $G/\Phi(P) \in \mathfrak{F}$. Then, since \mathfrak{F} is a saturated formation, we obtain that $G \in \mathfrak{F}$, a contradiction.

(2) Every minimal normal subgroup of G contained in P is of order p.

Let N be an arbitrary minimal normal subgroup of G contained in P. Since $\Phi(P) = 1$, $N \not\leq \Phi(P)$. Without loss of generality, we may assume that $N \not\leq P_1$, where $P_1 \in M_d(P)$. Let $N_1 = N \cap P_1$. Since $|N:N_1| = p$, N_1 is a maximal subgroup of N and so $N_1 \triangleleft N$. Since P_1 is s - c - cpermutably embedded in G, there exits an sconditionally permutable subgroup A of G such that P_1 is a Sylow *p*-subgroup of *A*. This means that for an arbitrary prime divisor q of |G| with $p \neq q$, there exits a Sylow q-subgroup Q of G such that AQ = QA. Since N_1 is a maximal subgroup of N and $N_1 = N \cap P_1 \leq N \cap AQ \leq N$, $N_1 = A \cap NQ$ or $N = N \cap AQ$. If $N = N \cap AQ$, then $N \le AQ$ and hence $P = P_1 N \le P_1 AQ = AQ$. This implies $P = P_1$, which is impossible. Hence we may assume that $N_1 = N \cap AQ$. Because $N \triangleleft G$, $N_1 \triangleleft AQ$. It follows that $A \leq N_G(N_1)$ and so $P = P_1 N \triangleleft N_G(N_1)$. Since (|G:F(H)|, p) = 1, P is also a Sylow p-subgroup of G. This shows that $N_1 \triangleleft G$. Since N is a minimal normal subgroup of G, $N_1 = 1$ and thus N is a cyclic subgroup of order p. (3) The final contradiction.

By (2), we know that $F(H) = R_1 \times \cdots \times R_s$, where R_i $(i = 1, \dots, s)$ is a minimal normal subgroup of *G* of order *p*. Since $G/C_G(R_i) \simeq Aut(R_i)$, $G/C_G(R_i)$ is cyclic. Therefore, $G/(\bigcap_{i=1}^s C_G(R_i))$ $= G/(C_G(F(H)) \in \mathfrak{F}$, we have $G/C_G(F(H)) \in \mathfrak{F}$. Therefore, $G/C_H(F(H)) = G/(H \cap C_G(F(H)))$ $\in \mathfrak{F}$. Since F(H) is an abelian group, $F(H) \subseteq C_H(F(H))$. On the other hand, we have $C_H(F(H)) \subseteq F(H)$ for *H* is soluble. Hence, $F(H) = C_H(F(H))$. This implies that $G/F(H) \in \mathfrak{F}$. Consequently $G \in \overline{\mathfrak{F}}$. The final contradiction completes the proof.

Corollary 2.4.1. Let \mathfrak{F} be a saturated formation containing the class of all supersoluble groups. A group $G \in \mathfrak{F}$ if and only if there exists a soluble normal subgroup H of G such that $G/H \in \mathfrak{F}$ and, for every Sylow p-subgroup P of F(H) satisfying (|G:F(H)|, p) = 1, every member of $M_d(P)$ is sconditionally permutable in G.

Recall that a subgroup H of G is said to be a 2-maximal subgroup of G if H is a maximal subgroup of some maximal subgroup of G. A group G is A_4 -free if there are no subgroups in G for which A_4 is an isomorphic image.

Theorem 2.5. Let G be an A_4 -free p-soluble group and p the minimal prime dividing |G|. Then G is p-nilpotent if and only if there exists a normal subgroup H of G such that G/H is p-nipotent and every 2-maximal subgroup of all Sylow psubgroups of H is s - c-permutably embedded in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that the assertion is false and let G be a counterexample of minimal order. Then

(1)
$$O_{p'}(G) = 1$$
.

Suppose that $O_{p'}(G) \neq 1$. Obviously, $(G/Q_{-1}(G))/(HQ_{-1}(G)/Q_{-1}(G)) \approx$

$$(G/O_{p'}(G))/(HO_{p'}(G)/O_{p'}(G))$$

 $\cong (G/H)/(HO_{p'}(G)/H)$

is *p*-nilpotent. Let $R/O_{p'}(G)$ be a Sylow *p*-subgroup of $HO_{p'}(G)/O_{p'}(G)$ and $P/O_{p'}(G)$ a 2-maximal subgroup of $R/O_{p'}(G)$. Then there must be a 2-maximal subgroup P_1 of some sylow *p*-subgroup of *H* such that $P = P_1O_{p'}(G)$. By Lemma 1.1, every 2-maximal subgroup of $R/O_{p'}(G)$ is *s*-*c*-permutably embedded in $G/O_{p'}(G)$. Thus the hypothesis holds for $G/O_{p'}(G)$. By the choice of *G*, $G/O_{p'}(G)$ is *p*-nilpotent. It follows that *G* is *p*-nilpotent, a contradiction.

(2) There exists an unique minimal normal subgroup L of G and $L = C_G(L) = O_p(G)$.

Let *L* be an arbitrary minimal normal subgroup of *G*. If $L \subseteq H$, then by Lemma 1.1, *G/L* satisfies the hypothesis. If $L \nsubseteq H$, then $H \cap L = 1$. Let φ be an isomorphism between *HL/L* and *H* such that $\varphi(hL) = h$. Suppose that *U/L* is an arbitrary 2-maximal subgroup of a Sylow *p*-subgroup of *HL/L*, then $V = \varphi(U/L)$ is a 2-maximal subgroup of a Sylow *p*-subgroup of *H* and U = VL. By Lemma 1.1, *U/L* is *s*-*c*-permutably embedded

Проблемы физики, математики и техники, № 2 (3), 2010

in G/L. Hence the hypothesis holds for G/L. Since the class of all p-nilpotent groups is a saturated formation, L is the unique minimal normal subgroup of G and $L \not\subseteq \Phi(G)$. By (1) and the hypothesis, L is a p-group and so $L = C_G(L) = O_p(G)$. Thus (2) holds.

(3) $G = L \rtimes M$, where $p^3 ||L|$ and M is p-nilpotent.

Since $L \nleq \Phi(G)$, there exists a maximal subgroup M of G such that G = LM. Since L is an elementary abelian p-group, so $G = L \rtimes M$ and $M \cong G/L$ is p-nilpotent. It is easy to see that G is p-nilpotent by Lemma 1.7 if $p^3 \nmid |L|$, a contradiction.

(4) The final contradiction.

Suppose that G_p is a Sylow p-subgroup of G. Then there exists a Sylow p-subgroup M_p of M such that $G_p = LM_p$. Since $|L| \ge p^3$, there exists a 2-maximal subgroup P_1 of G_p such that $P_2 = P_1 \cap H$. Obviously, $M_n \leq P_1$. Let $G_p \cap H = H_p$ is a Sylow *p*-subgroup of *H* and $P_2 = P_1 \cap H = P_1 \cap H_p$. Since $G_p = LM_p = LP_1 = H_pP_1$, $|H_p: P_2| = |H_pP_1: P_1| = p^2$ and so P_2 is a 2maximal subgroup of H_n . Hence by hypothesis, P_2 is s - c-permutably embedded in G. So there exists an s-conditionally permutable subgroup A of Gsuch that P_2 is a Sylow *p*-subgroup of *A*. Then for an arbitrary prime divisor q of |G| with $q \neq p$, there exists a Sylow q-subgroup G_q of G such that $AG_q = G_q A$. Let $L_1 = L \cap P_2$. Then

$$\begin{split} |\; L:L_1\; |{=}|\; L:L \cap P_2\; |{=}|\; LP_2:P_2\; |{=}\\ = \; |\; L(P_1 \cap H):P_2\; |{=}|\; LP_1 \cap H:P_2\; |{=}\; |\; H_p:P_2\; |{=}\; p^2\; , \end{split}$$

which means that L_1 is a 2-maximal subgroup of L. Since $L_1 = L \cap P_2 = L \cap A = L \cap AG_q$, $L_1 \triangleleft AG_q$. It follows that $G_q \subseteq N_G(L_1)$. On the other hand, since $L \cap P_2 = L \cap H \cap P_1 \triangleleft P_1$ and $L \cap P_2 \triangleleft L$, $L_1 \triangleleft G_p$. Hence $L_1 \triangleleft P_1 L = G$. But since L is the minimal normal subgroup of G, $L_1 = 1$, which contradicts to $p^3 ||L|$. The final contradiction completes the proof.

Corollary 2.5.1. Let G be an A_4 -free psoluble group and p the minimal prime dividing |G|. Then G is p-nilpotent if and only if there exists a normal subgroup H of G such that G/H is p-nilpotent and every 2-maximal subgroup of all Sylow p-subgroups of H is s-conditionally permutable in G. **Corollary 2.5.2.** Let G be an A_4 -free soluble group. Then G is a Sylow tower group of supersoluble type if and only if there exists a normal subgroup H of G such that G/H is a Sylow tower group of supersoluble type and every 2-maximal subgroup of all Sylow subgroups of H is s - cpermutably embedded in G.

Proof. Suppose that p is a minimal prime divisor of |G|. By Theorem 2.5, G is p'-closed. Let M be a Hall p'-subgroup of G. Then M is a Sylow tower group of supersoluble type by induction and consequently G is a Sylow tower group of supersoluble type.

Theorem 2.6. Let G be an A_4 -free p-soluble group and p the minimal prime dividing |G|. Then G is p-nilpotent if and only if there exists a normal subgroup H of G such that G/H is p-nilpotent and every 2-maximal subgroup of all Sylow psubgroups of $F_p(H)$ is s-c-permutably embedded in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Assume that the assertion is false and let G be a counterexample of minimal order. Then

(1) $O_{p'}(G) = \Phi(G) = 1$.

Let $T \in \{O_{p'}(G), \Phi(G)\}$. Suppose that $T \neq 1$. Obviously,

 $(G/T)/(HT/T) \cong G/HT \cong (G/H)/(HT/H)$

is *p*-nilpotent. By Lemma 1.6 and [3, Corollary 1.8.1], we have that $F_p(HT/T) = F_p(H)T/T$. Assume that R/T is a Sylow *p*-subgroup of $F_p(HT/T)$ and P/T is an arbitrary 2-maximal subgroup of R/T. Then there must be some 2-maximal subgroup P_1 of a Sylow *p*-subgroup of $F_p(H)$ such that $P = P_1T$. By Lemma 1.1, every 2-maximal subgroup of R/T is *s*-*c*-permutably embedded in G/T. Hence the hypothesis holds for G/T. By the choice of G, G/T is *p*-nilpotent and so *G* is *p*-nilpotent, a contradiction. Thus (1) holds.

(2) For an arbitrary minimal normal subgroup L of G, we have that $L \subseteq H$.

Assume that *L* is an arbitrary minimal normal subgroup of *G*. If $L \not\subseteq H$, then $F_p(H) \cap L$ = $H \cap L = 1$. Let φ be an isomorphism between *HL/L* and *H* such that $\varphi(hL) = h$. Then $\varphi(F_p(HL)/L) = F_p(H) = \varphi(F_p(H)L/L)$. It follows that $F_p(HL)/L = F_p(H)L/L$. Suppose that *U/L* is an arbitrary 2 -maximal subgroup of a Sylow *p*-subgroup of $F_p(HL)/L = F_p(H)L/L$. Then $V = \varphi(U/L)$ is a 2 -maximal subgroup of some Sylow *p*-subgroup of $F_p(H)$ and U = VL. By Lemma 1.1, U/L is *s*-*c*-permutably embedded in G/L. Hence the hypothesis holds on G/L. By the choice of *G*, G/L is *p*-nilpotent and so $G \cong G/(H \cap L)$ is *p*-nilpotent, a contradiction.

(3)
$$F_p(H) = O_p(H) = F(H) =$$

= $F(G) = O_p(G) = Soc(G)$.

It is directly obtained from (1) and (2).

(4) Let L be an arbitrary minimal normal subgroup of G. Then $L \subseteq Z(G)$.

In view of (1), there exists a maximal subgroup M of G such that $G = L \rtimes M$. Assume that $p^3 || L |$. Let M_p be a Sylow p-subgroup of M and G_p a Sylow p-subgroup of G such that $M_p \subseteq G_p$. Obviously, $|G_p:M_p|=|L| \ge p^3$. So there exists a 2-maximal subgroup P_1 of G_p such that $M_p \le P_1$. By (2), we have that $L \subseteq F(H)$. Let $P_2 = P_1 \cap F(H)$. Clearly, $G_p \cap F(H) = F(H)_p$ is a Sylow p-subgroup of F(H) and

$$P_{2} = P_{1} \cap F(H) = P_{1} \cap F(H)_{p}.$$

Since $G_{p} = LM_{p} = LP_{1} = F(H)_{p}P_{1}$ and
 $|F(H)_{p}: P_{2}| = |F(H)_{p}P_{1}: P_{1}| = p^{2},$
 $P_{2} = P_{1} \cap F(H)$

is a 2-maximal subgroup of $F(H)_p$. By hypothesis, P_2 is s - c-permutably embedded in G. Hence there exists an s-conditionally permutable subgroup Asuch that P_2 is a Sylow p-subgroup of A. Then for an arbitrary prime divisor q of |G| with $q \neq p$, there exists a Sylow q-subgroup G_q of G such that $AG_q = G_q A$. Let $L_1 = L \cap P_2$. Then

$$\begin{split} &|L:L_{1}|=|L:L\cap P_{2}|=|LP_{2}:P_{2}|=\\ &=|L(P_{1}\cap F(H)):P_{2}|=\\ &=|LP_{1}\cap F(H):P_{2}|=|F(H)_{p}:P_{2}|=p^{2}\,, \end{split}$$

which implies that L_1 is a 2-maximal subgroup of L. Since $L_1 = L \cap P_2 = L \cap A = L \cap AG_q$, $L_1 \triangleleft AG_q$. It follows that $G_q \subseteq N_G(L_1)$. On the other hand, since $L \cap P_2 = L \cap H \cap P_1 \triangleleft P_1$ and $L \cap P_2 \triangleleft L$, $L_1 \triangleleft G_p$. Hence $L_1 \triangleleft P_1L = G$. But since L is a minimal normal subgroup of G, $L_1 = 1$, which contradicts to $p^3 || G |$. This contradiction shows that |L| = p or p^2 . Let T be a Hall p'-subgroup of G. Then LT is a nilpotent subgroup of G and so $L \subseteq C_G(T)$. On the other hand, since $L \subseteq G_p$, $L \cap Z(G_p) \neq 1$. Hence |L| = p and $L \subseteq Z(G)$.

(4) The final contradiction.

By (3) and (4), we have that $F(G) = Soc(G) \subseteq Z(G)$. It follows that G = F(G) is nilpotent. The final contradiction completes the proof.

Corollary 2.6.1. Let G be an A_4 -free psoluble group and p the minimal prime dividing |G|. Then G is p-nilpotent if and only if there exists a normal subgroup H of G such that G/H is p-nilpotent and every 2-maximal subgroup of all Sylow p-subgroups of $F_p(H)$ is sconditionally permutable in G.

REFERENCES

1. *Doerk, K.* Finite soluble group / K. Doerk, T. Hawkes. – Berlin; New York : Walter de Gruyter, 1992.

2. *Guo, W.* The theory of class of groups / W. Guo. – Beijing-New-York-Dordrecht-Boston : Science Press-Kluwer Academic Publishers, 2000.

3. Ore, O. Contributions to the theory of groups of finite order / O. Ore // Duke Math. J. – 1939. – Vol. 5, N 2. – P. 431–460.

4. *Itô*, *N*. Uber die Quasinormalteiler endlicher Gruppen / N. Itô, J. Szép // Act. Sci. Math. – 1962. – Vol. 23. – P. 168–170.

5. *Guo, W.* Conditionally permutable subgroups and supersolubility of finite groups / W. Guo, K.P. Shum, A.N. Skiba // Southeast Asian Bull. Math. – 2005. – Vol. 29, № 2. – P. 493–510.

6. *Guo, W. X*-quasinormal subgroups / W. Guo, K.P. Shum, A.N. Skiba // Siberian Math. J. - 2004. - Vol. 48, № 1. - P. 433-442.

7. *Guo, W.* Criterions of supersolubility for products of supersoluble groups / W. Guo, K.P. Shum, A.N. Skiba // Publ. Math. Debrecen. – 2006. – Vol. 68, № 3–4. – P. 433–449.

8. *Guo, W. X*-semipermutable subgroups of finite groups / W. Guo, K.P. Shum, A.N. Skiba // J. Algebra. – 2007. – Vol. 315. – P. 31–41.

9. *Huang, J. S* -conditionally permutable subgroups of finite groups / J. Huang, W. Guo // Chin. Ann. Math. – 2007. – Vol. 28A (1). – P. 17–26 (in chinese).

10. Chen, S. S - C -permutably embedded Subgroups of finite groups / S. Chen, W. Guo // Int. J. Contemp. Math. Science. -2008. - Vol. 3, No 20. - P. 951-960.

11. The influence of SS-quasinormality of some subgroups on the structure of finite groups / Li S. [et al.] // J. Algebra. – 2008. – Vol. 319. – P. 4275–4287.

12. *Guo, W*. On *F* -supplemented subgroups of finite groups / W. Guo // Manuscripta Math. – 2008. – Vol. 127. – P. 139–150.

13. *Huppert B.*, Endliche gruppen I / B. Huppert. – Berlin-Heidelberg-New-York : Springer-Verlag, 1967.

14. *Shemetkov, L.A.* Formations of finite groups / L.A. Shemetkov. – Moscow : Nauka, 1978.

15. Asaad, M. On the supersolvability of finite groups / M. Asaad // Annale Univ. Sci. Budapest. – 1975. – Vol. XIII, № 26. – P. 3–7.

16. *Wang Y*. Finite groups with some subgroups of Sylow subgroups *c*-supplemented / Y. Wang // J. Algebra. – 2000. – Vol. 224. – P. 464– 478.

17. *Zhang, Q.* On *S*-semipermutability and abnormality in finite groups / Q. Zhang // Comm. Algebra. – 1999. – Vol. 27. – P. 4515–4524.

18. Xu M. An introduction to finite groups / M. Xu. – Beijing : Science Press, 1999 (in chinese).

Поступила в редакцию 12.05.10.